為了探索新型轉子式油氣混輸泵出口球閥內(nèi)流場規(guī)律,建立球閥流場的三維模型,利用Fluent軟件,將標準k-ε湍流模型與多相流技術相結合,采用SIMPLE 算法,對新型轉子式油氣混輸泵出口球閥內(nèi)的三維氣液兩相流場進行數(shù)值模擬。在容積含氣率為25% ,50% ,75% 的不同工況下,通過對球閥開啟高度分別為3,5,7mm 時的速度場、壓力場與氣液相分布的分析,探討在氣液混輸過程中閥的開啟高度及不同氣液比對閥內(nèi)流場的影響規(guī)律。模擬結果表明:球閥開啟高度越大,閥球上下壓差越?。婚y隙流速隨著開啟高度的增大而減小。
球閥具有結構簡單、互換性強、裝拆方便、便于清洗等優(yōu)點。為解決油田油氣混輸難題,將球閥與傳統(tǒng)外環(huán)流轉子泵結合,即在傳統(tǒng)外環(huán)流轉子泵出口增設了1組球閥,使其具有內(nèi)壓縮功能,能更好地適應氣液兩相工況。目前,對于球閥的研究基本上是針對容積式往復泵球閥,主要建立球閥運動規(guī)律的數(shù)學模型,研究球閥的開啟特性等內(nèi)容,且工況為純液態(tài)工況;對球閥閥口氣穴流場進行的數(shù)值模擬與試驗研究也局限于液體介質(zhì)。 目前尚未見有關轉子式油氣混輸泵球閥運動規(guī)律的研究報道。因此,對新型轉子式油氣混輸泵出口球閥的研究就顯得很有必要。
隨著計算機技術和計算流體力學的發(fā)展,應用CFD方法對流場進行分析已經(jīng)成為泵閥領域的研究熱點。因此,實現(xiàn)新型轉子式油氣混輸泵出口球閥三維流場的數(shù)值模擬,對于球閥的設計及優(yōu)化具有重要意義。
1 球閥結構及網(wǎng)格劃分
1.1 球閥結構
圖1為轉子式油氣混輸泵工作示意圖。新型轉子式油氣混輸泵在出口增設球閥以后,介質(zhì)要通過球閥才能輸送到出口管線中。當球閥關閉時,閥球與兩轉子及端板形成封閉容積V。由于轉子不斷旋轉,封閉容積V不斷減小,容積中壓力不斷升高,直到封閉容積內(nèi)的壓力達到開啟壓力時,閥球打開,介質(zhì)被排出。
圖1 轉子式油氣混輸泵工作示意圖
圖2為出口球閥結構示意圖。球閥由閥座和閥球組成,閥球開啟后,介質(zhì)由閥座孔入口流入,通過閥隙進入泵的排液腔。閥座孔直徑d=0.065m,閥座錐角α=45°,錐角長度l=0.005m,閥球半徑R=0.045m。
圖2 出口球閥結構示意圖
1.2 建模與網(wǎng)格劃分
由于出口球閥尺寸相對整臺泵非常小,在整臺泵計算過程中,難以得到閥隙處的詳細流動情況。因此,為了更全面地了解閥隙周圍與閥內(nèi)的壓力和速度分布,選取閥座與閥球間隙及閥球兩側部分作為研究對象,進行建模與分析。此外,球閥幾何形狀簡單且為軸對稱圖形,為了研究方便且減少計算量,采取三維軸對稱模型,建立一半計算區(qū)域。利用Pro/E軟件建立開啟高度為3mm時球閥的計算區(qū)域模型。將物理模型導入Fluent前處理軟件Gambit中進行網(wǎng)格劃分。為了劃分質(zhì)量較好的網(wǎng)格,對模型進行了分割并采用六面體/四面體混合單元,由于閥口的壓力梯度變化較大,因此對閥口加密了網(wǎng)格,使模擬結果更準確。三維模型及網(wǎng)格如圖3所示。同理可得到開啟高度分別為5,7mm時的模型和網(wǎng)格。
圖3 開啟高度為3mm時的模型與網(wǎng)格
2 模擬計算
2.1 邊界條件
介質(zhì)為原油和天然氣兩相混合物,原油的物理參數(shù)設置為ρoil=856kg/m3,動力黏度ν=0.0072Pa·s,并假設原油不可壓縮;天然氣在Fluent自帶的材料里選擇。
1) 速度入口。新型轉子式油氣混輸泵的出口閥由3個球閥組成,已知泵的流量為100m3/h,假設通過每個球閥的流量相等且忽略泄漏,則由連續(xù)流條件可得通過每個閥座的速度為
(1)
式中:υ0為入口速度,m/s,方向與閥座入口邊垂直;Q為泵的流量,m3/h;d為閥座孔直徑,m。由入口速度和特征直徑計算得到入口雷諾數(shù)大于1.2×104,流動為湍流,湍流強度設為10%,水力直徑為0.065m。
2) 壓力出口。已知出口絕對壓力為1.2MPa。
2.2 求解器與算法
模擬采用隱式壓力基求解器,流動為穩(wěn)態(tài)流動. 求解模型選擇兩相混合模型和標準k-ε湍流模型。壓力與速度耦合采用SIMPLE算法。
3 模擬結果與分析
3.1 壓力場分析
圖4-6為不同含氣率條件下,球閥在不同開啟高度時對稱面上的壓力分布云圖。
圖4 含氣率為25%時對稱面上的靜壓分布
圖5 含氣率為50%時對稱面上的靜壓分布
圖6 含氣率為75%時對稱面上的靜壓分布
由壓力云圖可得,當開啟高度為3mm,含氣率分別為25%,50% ,75% 時,閥球上下壓差分別為0.06,0.04,0.02MPa;當開啟高度為5mm,含氣率分別為25%,50% ,75% 時,閥球上下壓差分別為0.04,0.02,0.01MPa;當開啟高度為7mm,含氣率分別為25%,50% ,75% 時,閥球上下壓差分別為0.02,0.01,0.01MPa. 以上分析表明:
1) 在同一含氣率的條件下,隨著開啟高度的增大,閥球上下壓差逐漸減小。
2) 在某一較小的固定開啟高度時,閥球上下壓差隨含氣率增大而減??; 開啟高度較大時,含氣率對閥球上下壓差影響較小。
3) 含氣率大時,閥球上下壓差較小且受開啟高度的影響較小。
4) 在球閥的整個流場中,閥隙處的壓強最小。
3.2 速度分析
圖7-9為不同含氣率和開啟高度下流場Y-Z截面上的速度云圖和流線圖。
圖7 含氣率為25%時不同開啟高度的速度云圖和流線圖
圖8 含氣率為50%時不同開啟高度的速度云圖和流線圖
圖9 含氣率為75%時不同開啟高度的速度云圖和流線圖
由速度云圖可知:氣液比一定時,由于過流斷面突然減小,閥隙處的流速最大。隨著開啟高度的增大,閥隙流速不斷減小。圖7中,開啟高度為5mm時,閥隙流速為10m/s;開啟高度為7mm時閥隙流速只有7m/s。
由流線圖可知,在閥隙附近有部分介質(zhì)由于壓差的作用回流,之后被閥隙的高速介質(zhì)帶出。例如圖7a中的流線所示,部分介質(zhì)從出口回流,但在閥隙附近流線方向突然改變,與從閥隙流出的介質(zhì)一起沿著閥球壁附近流出。
另外,當開啟高度為3mm時,含氣率分別為25% ,50% ,75% 對應的閥隙流速均為15m/s。由上可知,同一開啟高度下,含氣率對閥隙流速的影響不大。但同一開啟高度下不同含氣率的流線不同,如開啟高度為3mm時,含氣率為75%的流線圖出現(xiàn)交叉流線,不同于另外2種開啟高度的流線,說明含氣率對介質(zhì)的流動狀態(tài)有一定的影響。
3.3 相態(tài)分布分析
圖10為開啟高度為3mm時,不同含氣率的氣相體積分數(shù)分布云圖。
由圖10可知,氣相主要分布在閥球壁附近,遠離閥球的氣相介質(zhì)逐漸減少。通過模擬結果可知,氣相介質(zhì)密度較小,在閥球開啟前,閥球底部分布的主要為氣體,球閥開啟后,氣體介質(zhì)首先排出。這表明,氣液兩相分界較為明顯,有利于氣相介質(zhì)的單獨回收。
圖10 不同含氣率時氣相體積分數(shù)分布云圖
4 結論
1) 在含氣率一定的條件下,隨著開啟高度的增大,閥球上下壓差逐漸減??; 在球閥的整個流場中,閥球底部壓力最大; 閥隙處壓力梯度大,閥座倒角下端處較容易產(chǎn)生氣蝕。
2)在含氣率一定時,閥隙流速隨著開啟高度的增大不斷減小。 部分介質(zhì)由于壓差的作用回流,之后被閥隙的高速介質(zhì)帶出。同一開啟高度下,含氣率對閥隙速度的影響不大,但對流動狀態(tài)有一定的影響。
3)新型轉子式油氣混輸泵在輸送氣液兩相介質(zhì)時,氣相主要分布在閥球壁附近,遠離閥球氣相介質(zhì)逐漸減少。